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SUPERCOMPUTER SIMULATION OF LIQUID DROP 
FORMATION ON A SOLID SURFACE* 

DONALD GREENSPAN 
Department of Mathematics, University of Texas at Arlington, Box 19408, Arlington, TX 76019, U S A  

SUMMARY 

Using a molecular-dynamics-type approach, we show how to simulate the formation of a liquid drop on a 
solid surface. Application is made to the case in which the liquid is water and the solid is graphite. The 
dynamical equations are large systems of nonlinear, ordinary differential equations which must be solved 
numerically. CRAY X-MP/24 simulations and related contact angle calculations are described and 
discussed. 
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1. INTRODUCTION 

Fluid phenomena which involve large gradients present exceptional theoretical difficulties.' This 
is readily apparent in the study of liquid drops, in which surface tension plays a major In 
this paper we will develop a molecular-dynamics-type approach to such problems. In particular, 
we will show how to simulate the formation of a liquid drop, taken to be water, on a horizontal 
solid surface, taken to be graphite. The related dynamical equations will be large systems of 
second-order, non-linear, ordinary differential equations which will be solved numerically5 on a 
CRAY X-MP/24. Since our numerical method will require minimal memory but maximal 
'number-smashing' capabilities, the CRAY is a most convenient computer to use, since on it we 
will be able to solve our 1003 equations for 4000 time steps in 97 s. 

At present, for budgetary reasons and for computational simplicity, attention will be restricted 
to two-dimensional simulations. Nevertheless, all the ideas and methods do extend to three 
dimensions.6 

2. LOCAL FORCE FORMULAE 

In order not to be confined to a system of molecules whose volume is prohibitively small,7 we will 
think in terms of aggregates of molecules, called particles or quasi-molecules. The force inter- 
action formulae for particles will be derived in this section by conserving the total mass and the 
total energy of the original molecular system. 

Consider first the system of 823 water particles PI, P,, . . . , P,,, shown in Figure 1. These 
particles are arranged on a regular triangular mosaic but in a relatively circular pattern. The edge 
length of each triangle in the mosaic is 0.030 5871 cm, the rationale of which will be explained 
shortly. The algorithm for generating the positions r( i) = (x(i), y (  i)) and velocity v( i) = (u,( i), 

* Computations performed at the University of Texas Center for High Performance Computing. 
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Figure 1. Initial fluid 

uy (i)) for each Pi is given as follows. From the 9500 points with 

x(l)= -0.6117420, y(l)= -0.7946762, u,(l)=O.O, u,(l)= 

~ ( 4 2 ) =  -0.5964485, y(42)= -07681870, u,(42)= uY(42)=00, 

x(i+ l)=x(i)+0*0305871, y(i+ l)=y(l) ,  u,( i+  1)=0.0, u,(i+ l)=u,,(l), 

i = l ,  2, 3, . . . .  40, 

x(i+ l)=x(i)+O.O305871, y(i+ 1)=y(42), u,(i+ l)=u,(42), u,(i+ 1)=0.0, 

i=42, 43,. . . .  80, 

x(i) = x( i- 81), y( i) = y( i - 81) +00529784, u,(i) = - u,( i- 81), u,(i) = - u,(i - 81), 

i =  82, 83, . . .  ,9500, 
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choose only those which satisfy 

[ x( i)] + [ y ( i)] < 0.2123. (1) 
These are the 823 points shown in Figure 1. Note that the horizontal radius of this relatively 
circular set contains 15 particles, so that the radius r is approximately 

r =  15(0.0305871)=0.4588065 cm. (2) 
For the interaction of the particles we assume a force F, , in dynes, between two particles R cm 

apart, with magnitude F,  given 

From (3) then, in ergs, 

G H  
R3 R5 

F,(R)= --+-. 

G H  
2R’ 4R4 

$,(R)= --+-. 

(3) 

(4) 

For the system shown in Figure 1 we assume that F ,  =O between two neighbours, so that 

-(0’0305871)’G+ H =O. (5 )  

Assuming zero kinetic energy, the total energy El of the particle system is approximately4 

G 
E1=3(823) - ( 2(0.0305871)’ 

We show next how to use (9, (6) and conservation of total energy to determine G and H 
uniquely in (3). For actual water molecules one can use the approximation* 

[ ( 2 . y ) ”  - (2.:5)“] __ $ ( r )  = (1.9646383) 10- l 3  ~ erg, (7) 

in which the distance r between two molecules is measured in angstroms. From (7) the magnitude 
of the force F, in dynes, is 

( (2.725)” -6- (2.725)‘) . 
F ( r )  = (1-9646383) lop5 12 

r13 r’ 

Note from (8) that F ( r ) = O  implies r=3.05871 A. (Our choice of 0.0305871 cm for the construc- 
tion of Figure 1 was based on this angstrom measurement for the purpose of simplifying later 
calculations.) We now fill the circle shown in Figure 1 with molecules which are vertices of a 
regular triangular grid with edge length 3.05871 A. The number N of molecules which fill the 
region is approximately 

Assuming zero kinetic energy, the total energy E of the molecular system is approximately 

[ ( 2725 )” - ( 2.725 )6] 
erg 3-05871 

E=3(707)10’’(1~9646383) ~ 

3.05871 

or 

E= - 104.1745. 
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Note that the expression in the square brackets of (10) is simply [(4)’-(3)]. Equating El and E 
implies 

- 534,4332 G + 285618.8 H = -0.04219299. (11) 
The solution of (5) and (11) is 

G=(1.57898) low4, H=(1*47725) lo-’, 

so that (3) and (4) can be given explicitly as 

10-4+- 1.47725 lo-’, 
1.57898 

F , ( R ) =  -____ 
R3 R5 

Note that (13) can be rewritten in the form 

in which 
g, 

distributing the total water molecule mass over the 823 particles yields an individual water 
particle mass M ,  given by 

=0.0421929 and c1 =0*0216284. 
Note also that since the mass of a single water molecule is approximately rn=(30.103) 

Ml =(2.586) g. (15) 
Using the very same line of reasoning as for water, let us proceed to develop appropriate 

formulae for graphite. A five-row, 1003-particle slab of graphite particles is generated using a 
regular triangular mosaic with edge length 0.03834 cm by the formulae 

x (1) = - 3.834, y (1) = 0.0, ~ ( 2 0 2 )  = - 3.8 1085, ~ (202)  = 0033 17, 

x(i+ 1)= ~ ( i )  +0.03834, y( i+ 1)= y(l), i = l , 2 , .  . . ,200, 

i = 202,203, . . . ,400, X(  i + 1) = X( i) + 0.03834, y(i + 1) = y(202), 
x(i)=x(i-401), y(i)=O.O6634+y(i-401), i=402,403, . . . , 1003. 

The resulting slab is 7.688 cm wide and 0.13268 cm high, and is shown in Figure 2. One should 
note immediately the difference in units between Figures 1 and 2. 

Let the force F,, in dynes, between two graphite particles R cm apart have magnitude F ,  given 
by 

G H  
R3 R5 

F, (R)=  --+-, 

Y 

X 

Figure 2. Initial slab 
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so that 

G H  
2R2 4R4 4z(R)= --+- 

Assuming F ,  = O  for two neighbours, (16) implies, in analogy with (5),  

- (0.03834)’ G + H = 0. (18) 
Assuming zero kinetic energy, the total energy E ,  of the system is approximately 

G 
Ez=3(1OO3) - ( 2(003834), 

However, for actual atoms of g r a ~ h i t e , ~ , l ~  with r in angstroms, 

lo-‘, erg, 
38591.3 24.3000 

463095.6 145-8) ( ,.13 -__ F ( r ) =  
r7 

where F(r) is measured in dynes. In (20) and (21), 4(3*41570)=0 and F(3.83400)=0. Then the 
number N of atoms which fill the slab on a regular triangular mosaic with edge length 3.83400 
is 

Assuming zero kinetic energy, the total energy E of the system is approximately 

38591.3 - 24.3000 ) 
(3.83400) (3.83400)6 

E =  3(7.992) 1014 

so that E= -9.17149. Note that the ratio of the numbers in the large parentheses of (22) is two. 
Equating E and E, implies 

= -(3.04802) 
G H 

2(0.03834)’ -k 4(0.03834)4 
- 

The solution of system (18) and (23) is approximately 

G=(1.792181) and H=(2.634426) 

Thus 

10-5+ 2.634426 R5 
1.792181 

R3 
F,= - 

8-960905 6.586065 
R4 4 2 = -  R 2  

Note that ~,(0~0271105)=0, so that 4’ can be rewritten as 

in which a,=O271105 and &,=(3.048013) 



900 D. GREENSPAN 

Note that since the mass of a carbon atom is approximately (1.9938) lo-', g, the total atomic 
mass of the slab, when distributed over the 1003 graphite particles, yields a particle mass M ,  given 
by 

M ,  =(1.588679) lo-'' g. (27) 

Finally, to determine the force F3 between graphite and water particles, we use the empirical 
bonding law4 

where ~ , = ~ ( e ~ e ~ ) = 0 ~ 0 1 1 3 4 0 4  and cr3=$(a, +0,)=0.02436945. Thus 

1.5998 
10-5+- 10-8. 

R4 
2.6938 

43= -7 
Hence 

6.3992 10-5 + - 5.3877 F 
R3 R5 3 -  

In summary, the water-water interparticle force F, , graphite-graphite interparticle force F2 
and water-graphite interparticle force F, yield, to four significant figures, 

1.477 
R5 

10-4+- 10-7, 
1.579 

R3 
F l ( R ) =  -__ 

1.792 2-634 
F,(R)= -- R3 10-5+- R5 10-8, 

6.399 
R5 

10-5+- F3(R)=  -- 
5.388 

R3 

while 

F ,  (0.03059) = F2(O*03834) = F3 (003446) = 0. (32) 
The distances R , = 0.03059, R ,  = 0.03834 and R ,  = 0.03446 are called equilibrium radii. 

3. DYNAMICAL EQUATIONS 

In order to derive dynamical equations for particle motions, let us begin with the motion of a 
water particle Pi as it interacts with other water particles. The motion of Pi,  in general, is given by 

in which the summation is taken over particles Pi which are within a prescribed distance D, from 
Pi, &j is the distance between Pi and Pi ,  a, is a scaling factor which assures that the particle 
interaction is local relative to gravity, and M ,  is the mass of a water particle given by (15). 
Division by MI yields 



LIQUID DROP FORMATION ON A SOLID SURFACE 901 

We now assume, as is common in molecular mechanics, that Pi is acted upon only by particles Pi 
which are within five equilibrium radii of Pi, so that D, = 5(0.03059)=015295. By 'local relative to 
gravity' we assume the usual 5% experimental error allowance, so that 

which yields al =(2.99095) lo-*. Thus (34) reduces to 

1.70828 lo-'+- 
dZRi - 1.82627 -- - 
dt2 (Rij) 

Finally, making the changes of varibles 

R =  10R, T= lot, 
(35) reduces to 

-=-98*O+C d2 Ri 18.2627 1-70828) 
dTZ i 

(35) 

(37) 

Using the same line of reasoning, the dynamical equation for the interaction of a graphite 
particle with other graphite particles is 

10-4) 
0.359575 5-285275 + -- 

dt2 

and the distance of local interaction is D, =O-1917. Under transformations (36) the equation 
becomes 

d2Ri 35.9575 5.285275 
d T 2  
-- (39) 

The interaction of a water particle Pi with graphite particles Pi is governed by the equation 

0.261085 3.10075 lo-4) 
-- +- Y dt2 

with the local interaction distance D3 = 0.1723. Under transformations (36), the equation becomes 

d2R. ( 26.1085 3.10075) +=-98.O+C --+- . 
d T  i (Rij)3 (Rij)' 

Note, incidentally, that the first transformation in (36) has the effect of multiplying all co- 
ordinates in Figures 1 and 2 by the factor 10. Hereafter, all discussion is in terms of variables R 
and T. However, the random initial velocities prescribed for particles Pl-Ps23 will be retained. 

4. DROP AND SLAB STABILIZATION 

If, for example, one proceeds numerically with AT= 0.00005 and one allows the water particles to 
interact in accordance with (37), the system exhibits large expansion and contraction modes. The 
reason is that the initial potential energy is large. To overcome this situation, Pi-PS23 were 
allowed to interact in accordance with (37), but every lo00 time steps all velocities were damped 
by the factor 0-9. At the end of 37000 time steps the damping was removed and the particles were 
allowed to interact for 9000 more time steps to t460,o. The large oscillating modes were no longer 
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I '  

Figure 3. Stable fluid 

Y 

X 

Figure 4. stable slab 

present. The resulting stable configuration is shown in Figure 3, where, most importantly, the 
outermost particles show a lower density than the inner particles, which is characteristic of liquid 
surface tension. The average diameter in Figure 3 is appoximately two-thirds that of Figure 1. 

The slab was stabilized in accordance with (39), but in the following fashion in order to 
maintain its solid state. Again we chose AT=0-00005. Whenever the total system kinetic energy 
exceeded 100, all velocities were damped by the factor 0.25. The system was allowed to run to 
t25000,  at which time the slab had contracted vertically primarily to the relatively stable 
configuration shown in Figure 4. More extensive time calculations led to crumbling, which was 
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Figure 5. T=0.0 
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Figure 6. T=0.28, KE=4500 

considered to be physically unreasonable. The result in Figure 4 has a height which is approxim- 
ately two-thirds of that shown in Figure 2. 

5. SESSILE DROP FORMATION 

The drop shown in Figure 3 is now translated vertically upwards 4-5 units so that it sits 
immediately above the slab shown in Figure 4. This arrangement is shown in Figure 5, with only 
the central slab particles being plotted. The mode of presentation in this and the next graphs 
distinguishes between the water and carbon particles so that the interaction can be discerned 
easily. 
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Figure 7. T= 060, KE = 1900 

.................................... ..................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Figure 8. T=092, KE=840 

The slab particles were allowed no further motion, but P,-P,,, were allowed to interact with 
themselves and with the graphite particles in accordance with (37) and (39). For the first 200000 
steps of the computer simulation we used AT= l(10-6). Thereafter we used AT=2(10-6). To 
account for the energy increase due to the effect of gravity, all velocities were damped by 0 9  every 
2000 time steps all through the calculations. This was not considered to be significant since our 
interest was only a relatively steady state configuration. 

The results are summarized in Figures 6-9 at the respective times T=0-28,040,0.92 and 1-40. 
The kinetic energy KE is also recorded in each caption since it reflects the temperature of the 
system. The figures show an interlocking of particles below the central fluid mass and a relative 
steady state at T= 1.40. Using linear least square approximations with the four lowest boundary 
particles on the left and right sides of the system, as shown in Figure 10, we found a left contact 
angle of 64" and a right contact angle of 68", the average being 66". An experimentally determined 
contact angle measurement reported' is 60". 
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Figure 10. Contact angle fit 

6. REMARKS 

Improvement in the results reported here should follow as the numbers of water and graphite 
particles are increased and the interaction parameters are made more precise. 

The problem of determining the temperature through the kinetic energy remains, since no 
precise connecting relationship is available for quasi-molecular systems as exists for molecular 
systems. 
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